Behind the scenes: How are Spy DNA weapons made?

Hey everyone, and welcome to the second part of our introduction to the workflow for creating the assets. If you haven't read the post about who I am, you can check it out first. Today I wanted to talk about my process for creating the assault rifle for Spy DNA.

Conceptualizing the weapon

The first thing that needs to be done before any actual modeling is the concept. This phase of the project is quite important as it will set the dynamic of the work follows.

Another very important thing when creating a model that doesn't exist in real life is to make it appear functional.

Creating the concept for this weapon started with the basic choice of ammunition feed system. For this gun we chose a bullpup design, which means the clip feed is integrated in the stock.

The next thing that was to provide places for the attachments, such as scope, holo-sights, etc. This meant we would be using threaded rails on the gun for the actual attachments.

Modeling the weapon

So now that we have the concept, or the guidelines for our weapon we can proceed to the modeling phase. This is the phase in which we need to be careful on how our concept will come together. Also this is where we need to make our model scale be in line with a realistic model. The reason why this is important is because we want to make sure the weapon animates well in-game, and that the characters using it will look good doing so.

For the actual modeling I used 3ds Max, and basic polygon modeling techniques. The main goal here was to keep the design guidelines in mind and make it into a complete weapon. After a few different versions and going through a few failed designs I ended up with a base model that the team and myself were happy with.

Now that the basic shape was achieved it was time to add in the fine details like little screws, bolts, rivets, threads and the barrel threading. Once all of this is done, we basically have the high polygon count (high-poly) model for our game.

If you are curious as to how all this works, go ahead and check out my YouTube channel.

Getting the model game-ready

Once we have the high-poly model, we need to make a game-ready (low-poly) model. The process of creating a low-poly model of an existing high-poly model is called retopology.

This is one of the more time-consuming parts of the asset creation. Here you basically need to make the 3D model that can be used in the game engine. This means that you will have a polygon budget that will limit how much detail you can put in your model. If you aren't careful of your budget, you can end up putting a strain on the player's computer, and their framerate will drop, and nobody likes that.

This is how the low-poly model of the SR100 looks underneath the textures.

This is how the low-poly model of the SR100 looks underneath the textures.

For this project I did most of my retopology in 3ds Max, but I also used Topogun and 3d Coat. When you're done, you get a low-poly model that has the basic shape, but not the surface details of the high-poly model. Next, we'll need to unwrap it so we can apply textures.

Texturing the model

Once we have an unwrapped model, we can continue to the texturing phase. In this phase first we bake the surface details from the high poly to the game model. This way in the game the weapon will look as if it still had all the little screws, buckles, etc., even though the low-poly model has none of that. 

After this is done we go with the actual application of the materials. I used Substance Painter which is an application for texturing to do the textures for the weapon. With the model done, unwrapped and textured we have the finished model that will be used in the game.

What's next?

If you're still with me, then you were able to get a little taste of what it takes to create a game asset from start to finish.

As we make progress developing Spy DNA, we'll be making more posts like these, so you can look over our shoulders in a way. You will get to hear from the other team members, each talking about their aspects of creating this game.

So for today that would be all from me, and remember to come back and check on our progress often!

-- Denis Keman

Introducing Spy DNA 3D artist

This is a post written by our talented 3D artist Denis Keman. We'll be publishing a series of posts by Denis, which will cover his creative process, and provide insight into how game models are made.

Who am I ?

Hey everybody, my name is Denis Keman. I am a 3D modeler and a 3d generalist. My YouTube channel (Denis Keman - "very creative i know") is all about 3d modeling. I was lucky enough to get a chance to work on the upcoming game Spy DNA. I was hooked on this project because of the old “Jagged Alliance” feel that it had. Then I met the awesome team at Shy Snake Games and we just hit it off instantly. 

Now with that short intro out of the way, i would like to tell you a bit about my workflow. And what i use to do the things i do.

What do i use in my workflow ?

First things first, what you need to know is that 3D work is basically art. To understand it, you need to know the tools that were used. 

In the field of 3D modeling you have a wide array of different tools like Blender, Maya, Rhinoceros, Max etc. All of these are 3D modeling packages, and the one that I use is 3DS Max. I created the high poly and the low poly models in 3ds Max, and texturing was done with Substance Painter. 

If you are not a 3D modeler, you might ask what’s the difference between high and low poly model. Well it's basically two models with different levels of detail for the same thing. The idea is to get the high poly details onto the low poly model (the one you see in game). That way you get a good-looking model that doesn’t eat up all of your system resources when it’s rendered in-game. In order not to get too technical I will leave that for a future post.

The creative process

Getting from point A to point B is not always a straight line, especially in creative work. The first thing that needed to be modeled was the weapons that will be used in-game. The idea here wasn't to simply recreate an existing real-life weapon, but rather to design a unique one. 

The first custom design model was the P-15 handgun. This gun is compact, easy to conceal and carry around. That means that the frame in not bulky and has flowing lines. 

Another thing that i had to keep in mind was the fact that it didn't shoot conventional ammo. Instead it was shooting gun darts, which meant that the barrel had to be different from a conventional firearm. 

Another thing that I had to put into the design was a screen at the back of the gun for showing the shooter their ammo status, firing mode, etc. After going through a few design iterations I ended up with the design you see below.


Since this is the first blog post from me, I would like to cut it short here. I hope it was fun, and that you enjoyed a glimpse into my design process. You should also have a better idea of what the process behind making a game model looks like now. Next time we will go over how the creation process goes for a different weapon. 

And if you would like to see a more technical look at things, leave a comment down below. Depending on what you’d like to know, I will do my best to explain it. 

For any information about the game hit us up on twitter @ShySnakeGames. And don't forget to share this around so more people can hear about Spy DNA. Remember folks, sharing is caring.

So that would be it for now. I will see you all next time.
-- Denis Keman

Characters and animation

We’re getting ready to go to Kickstarter with our game, to help us raise the money needed for the custom art, animations, and hopefully original music for Spy DNA. This means we’re making a new video to show off the progress we’ve made in the past couple of months.

One important improvement you’ll notice is that we’re using custom characters to replace the placeholders we got from the Unreal Engine asset store.

The cool thing about using custom characters is that we can make them look all different, use different body types, skin and hair colors, and of course different clothing.

Now the challenge with that is that once you stray from the Unreal Store, you need to rig up and animate the characters from scratch.

While we’re working on funding custom motion captures, we’re using some animations we purchased from mo-cap vendors with our characters.
We have (finally!) settled on an animation workflow for the project. We use Autodesk MotionBuilder for working with animations. This allows us to retarget an animation from one character to another. This is important because depending on the source of the character they may have a different skeleton, which makes the animations incompatible. This tool allows us to solve this problem.

Next, we get the animations into our project in Unreal Engine. That done, there is still a lot of work to do. The first step is selecting which animation to play for a character at any given time. At last count we have nearly 1,000 animations captured. Selecting the right one to play at any given time is complex enough we had to abandon the normal UE4 blueprint system and move most of the animation logic to C++. Once the system knows which animation is to be played, it may be necessary to slightly speed up or slow down the playback to match the speed of the specific character. 

It’s at this point that things start to get hard (as if it wasn’t hard enough already, heheh). So now that you have your base animation, you want to adjust it for the environment, so that a character's feet don’t go through the ground or hang in the air. Also you want the character to look and aim in the right direction. For these effects we are evaluating some middleware solutions (HumanIK, Morpheme, and IKinema). These provide tools for improving the interaction between the animation, character model, and the environment. In some cases they can also generate animations on the fly in response to environmental stimulus. A good example would be falling down stairs after dying.

In the process of getting it all to work, we get to watch many animations that look pretty funny. Do you have your favorite animation bloopers from a game you played? Share it with us in the comments.